ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Παραδείγματα μιγαδικών δυναμικών στην ηλεκτροστατική. Επίλυση ενός προβλήματος στην ηλεκτροστατική με τη βοήθια μιας σύμμορφης απεικόνισης. Παραδείγματα μιγαδικών δυναμικών στην δυναμική των ρευστών.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Διανυσματικά πεδία σε δύο διαστάσεις και περιγραφή τους στο μιγαδικό επίπεδο. Εφαρμογές στην αγωγή της θερμότητας, την ηλεκτροστατική και την δυναμική των ρευστών.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Παράδειγμα επίλυσης της μη ομογενούς κυμματικής εξίσωσης σε μία διάσταση όπως και μίας ολοκληρωτικής εξίσωσης με την μέθοδο του μετασχηματισμού Fourier.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Επαναληπτικές ασκήσεις.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Στοιχεία χώρων Hilbert. Γραμμικοί τελεστές σε χώρους Hilbert.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Επίλυση κυκλώματος RLC με στιγμιαία εξωτερική τάση (συνέχεια προηγούμενης διάλεξης). Υπολογισμός της αντίστροφης μετασχηματισμένης Fourier της συνάρτησης F(k)=exp(-tk2).ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Ασκήσεις επίλυσης διαφορικών εξισώσεων με την μέθοδο του μετασχηματισμού Fourier.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Επίλυση μερικών διαφορικών εξισώσεων (εξίσωση Laplace, εξίσωση διάχυσης, κυμματική εξίσωση) με τη βοήθεια ενός μετασχηματισμού Fourier.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Επίλυση προβλημάτων Dirichlet. Εισαγωγή στη "συνάρτηση δέλτα" του Dirac.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Ιδιότητες του μετασχηματισμού Fourier (Συνέχεια προηγούμενου μαθήματος). Παραδείγματα υπολογισμού μετασχηματισμένων Fourier. Επίλυση μιας γραμμικής διαφορικής εξίσωσης με σταθερούς συντελεστές (κύκλωμα RLC με ημιτονοειδή όπως και με στιγμιαία εξωτερική τάση) με την βοήθεια ενός μετασχηματισμού Fourier.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Επαναληπτική άσκηση πάνω στις εξισώσεις Cauchy-Riemann και υπολογισμός ενός δρομικού ολοκληρώματος με παραμετροποίηση του δρόμου ολοκλήρωσης.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Το ολοκλήρωμα Fourier. Απλά παραδείγματα υπολογισμού μετασχηματισμένων Fourier. Ιδιότητες του μετασχηματισμού Fourier.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Ιδιότητες των σύμμορφων απεικονίσεων. Ένα παράδειγμα της απεικόνισης ενός τριγωνικού χωρίου μέσω μιας σύμμορφης απεικόνισης. Τα προβλήματα Dirichlet και Newmann. Επίλυση δύο προβλημάτων Dirichlet με την βοήθεια σύμμορφης απεικόνισης.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Ορισμός της παραγώγου της "συνάρτησης δέλτα". Ο διανυσματικός χώρος των κατά τμήματα συνεχών συναρτήσεων σε ένα διάστημα [a,b] της πραγματικής ευθείας. Σειρές Fourier. Ο διανυσματικός χώρος των κατά τμήματα συνεχών συναρτήσεων με πεδίο ορισμού όλη την πραγματική ευθεία. Ο μετασχηματισμός Fourier.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Υπολογισμός ολοκληρωμάτων συναρτήσεων μιας πραγματικής μεταβλητής με τη μέθοδο των ολοκληρωτικών υπολοίπων. Παραδείγματα.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Ασκήσεις πάνω στον υπολογισμό πραγματικών ολοκληρωμάτων. Απεικονίσεις: Η γραμμική απεικόνιση, η απεικόνιση f(z)=1/z, η διγραμμική απεικόνιση. Η έννοια της σύμμορφης απεικόνισης.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Παρατηρήσεις πάνω στο θεώρημα του Laurent. Ταξινόμηση των ανώμαλων σημείων μιας συνάρτησης. Ολοκληρωτικά υπόλοιπα. Θεώρημα των ολοκληρωτικών υπολοίπων. Υπολογισμός ολοκληρωτικών υπολοίπων σε πόλους. Παράδειγμα αναπτύγματος συνάρτησης σε σειρά Laurent.ΜΙΓΑΔΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ, Τμήμα ΦΥΣΙΚΗΣ
Ιδιότητες της ομοιόμορφης σύγκλισης σειράς συναρτήσεων. Δυναμοσειρές. Θεώρημα Taylor. Σειρές Taylor. Παραδείγματα ανάπτυξης συναρτήσεων σε σειρά Taylor. Θεώρημα του Laurent.